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INTRODUCTION



Light 400 - 700 nm is important for vision
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How dependent are
we on colour?



No colour...




Colour...




But just how
important is colour?



ACHROMATIC COMPONENTS

CHROMATIC COMPONENTS




CHROMATIC COMPONENTS

Chromatic information by itself provides relatively
limited information...



ACHROMATIC COMPONENTS

Achromatic information 1s important for fine detail ...



Trichromacy means that
colour vision 1s
relatively simple.



» B

The laws of colour mixing that
apply to projected lights or
combinations of dots are called
“additive”.




But what about mixing paints?

Photo: Jozsef Szasz-Fabian



The laws of colour mixing that apply to pigments or paints
are different because they depend on what is absorbed or
from the reflected light by the pigment.
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WHITE PIGMENT



WHITE PIGMENT

A white pigment reflects red, green and blue lights.



RED PIGMENT

A red pigment subtracts green and blue and reflects red.



GREEN PIGMENT

A green pigment subtracts red and blue and reflects green.



X

BLUE PIGMENT

A blue pigment subtracts red and green and reflects blue.



Laws of subtractive colour mixing
(of paints or pigments)



Subtractive colour mixing (of paints or pigments)

YELLOW PIGMENT

CYAN PIGMENT



Subtractive colour mixing

YELLOW PIGMENT \w

GREEN PIGMENT

CYAN PIGMENT



Subtractive colour mixing

YELLOW PIGMENT \
S

+
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Subtractive colour mixing

CYAN PIGMENT \\
— %X
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BLUE PIGMENT

MAGENTA PIGMENT



SUBTRACTIVE COLOUR MIXING




SUBTRACTIVE NDIDINNAYAD
COLOUR MIXING COLOUR MIXING

NOTE THAT THESE MIXING “LAWS” ARE BOTH
CONSISTENT WITH HUMAN COLOUR VISION
BEING A TRICHROMAT, THREE VARIABLE SYSTEM.



SUBTRACTIVE NDIDINNAYAD
COLOUR MIXING COLOUR MIXING

But, why is normal human vision a
trichromatic, three variable system?



COLOUR VISION AND
MOLECULAR GENETICS



Normal Deuteranope

How do red-green
colour vision
deficiencies arise?

From Sharpe, Stockman, Jagle & Nathans, 1999
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From Sharpe, Stockman, Jigle & Nathans, 1999



From Sharpe, Stockman, Jigle & Nathans, 1999

A M- vs S-cone pigment
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Why are the M- and L-
cone opsins so similar?

From Sharpe, Stockman, Jigle & Nathans, 1999

A M- vs S-cone pigment
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Phylogenetic tree of visual pigments
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Gene duplication on the X-chromosome

M-cone
photopigment
opsin gene

Mammal

Human/ Old world
primate



Because these two genes are 1n a tandem
array, and are very similar...

M — AW

M-cone
photopigment
opsin gene



Crossovers during meiosis are

common.
Intergenic crossover
Deuterancps
- -
—
iy — Iy —
Maormal

Intergenic crossovers produce more or less L and M-

cone genes on each X chromosome

From Sharpe, Stockman, Jigle & Nathans, 1999



Intragenic crossovers produce hybrid or mixed L and M-cone genes

Intergenic crossover
-
Intragenic crossover
:H:

Intragenic crossover

-

From Sharpe, Stockman, Jigle & Nathans, 1999
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The spectral sensitivities of the hybrid
photo-pigments vary between those of
the M- and L-cones depending on where
the crossover occurs.



Single-gene dichromats

Protanope

With a single gene
male observers must
be dichromats



Multiple-gene dichromats

ME)— W
Male observers with two similar
genes may also be effectively
dichromats if the two genes

produce similar photopigments.



Anomalous trichromats Male observers with two

different genes are
“anomalous” trichromats

AN »—-’\N‘- Protanomalous
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Main types of colour vision defects with approximate
proportions of occurrence in the population.

percent in UK

Male  Female

Condition
Protanopia no L cone 1.0 0.02
Protanomaly = milder form 1.0 0.03

Tritanopia no SWS cone 0.008 0.008




Diploid chromosome complement of

Male Female

XY inheritance g

Meiosis

Sex determined by type of sperm entering the ovum

Figure 10.17 Prior to fertilization, meiotic division of germ cells results in two types
of sperm, but only one type of ovum. Depending on which sperm is
effective, the fertilized ovum will have two X cells and be female, or
one X and one Y cell and be male. This diagram show why the X cell

of the male offspring can come only from the mother. (From Watson,
1976, p. 14.)



The emergence of two longer wavelength
(M- and L-cones) is thought to have occurred
relatively recently in primate evolution.

Why 1s 1t important?



No red-green discrimination

Source: Hans Irtel



Red-green discrimination

Source: Hans Irtel



DIAGNOSING COLOUR VISION
DEFICIENCIES



Ishihara plates










Tests measuring colour discrimination



Farnsworth-Munsell D-15

From: Ted Sharpe



Farnsworth-Munsell D-15
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From: Ted Sharpe



Mild Severe
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Protans: 45
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Protan

D15 results

(a)2.

Deutan

Tritan

Rod
monochromat

12 11

14 : Fig. 7.1 Classification of the type of colour deficiency with the Farnsworth D15 test. (a)
Credit:
edlt Jenny Berh Protan, deutan, and tritan defects. 1. Moderate and severe protan defects. 2. Moderate and

severe deutan defects. 3. Moderate and severe tritan defects. {b) Typical ‘rod’ monochroma-
tism. The arrangement represents a lightness scale not isochromatic colour confusions.



COLOUR AFTER-EFFECTS



Colour
after-effects







You don’t have to see things for them
to produce an after-effect...



Beer & MacLeod



Beer & MacLeod









Lilac chaser or Pac-Man illusion

Jeremy Hinton



Lilac chaser or Pac-Man illusion

http://michaelbach.de/ot/index.html Michael Bach and Jeremy Hinton




COLOUR CONTRAST



Color contrast



Color contrast




Color contrast




Color contrast




Color contrast




MacLeod



MacLeod



COLOUR ASSIMILATION



Colour assimilation



Colour assimilation




Colour assimilation




Colour assimilation




Munker
illusion




COLOUR CONSTANCY



Colour constancy

The Color of Li ght

DAYLIGHT FILM




Credit: Gegenfurtner
Colour constancy

red green




Chromatic adaptation
and colour constancy

The change in colour appearance
following adaptation is due to
chromatic adaptation. Chromatic
adaptation is adaptation to the
colour is of the ambient
illumination.

Amazing Art, Viperlib



Colour and the illuminant

B dhow mask





Colour and brightness

TH rrrr T |-|' o 0 I-rHrI o T it FF R PTG

i mu \\m '
":'g %ﬁ' ' l%\x

+++++lr

rIIIIIII III‘I II " " l "I 1n -I-I FL " IIr‘II III- 1
BBt ot Blodaii vl il @, ALY i
@ £ Caamyriyim fealn Fsirvan i A5 rigiog s oremi




This image combines illusions of form and colour. The central element "MASK
of the two "X’ objects appear very different in colour (dark blue on the
left and light yellow on the right). What's more, the angles of each "X’

appear either smaller or larger than 90 degrees.

| Image by R. Beau Lotto



i Image by E. Beau Lotto



Stroop effect

Say to yourself the colours of the ink 1n which the
following words are written -- as fast as you can.

So, for , say “red”.
But for RED, say “green”

Ready, steady...



TEST 1

GREEN YELLOW PINK

ORANGE GREEN WHITE
GREEN YELLOW PINK ORANGE
WHITE YELLOW

WHITE ORANGE GREEN

How long?



BROWN

YELLOW

RED

TEST 2

PINK RED
BLUE

BLUE RED
GREEN

PINK BLUE

How long?

BROWN

ORANGE

WHITE

RED
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